---世纪新锐文档区欢迎你的到来!交流经验 资源共享!如果你有网站 欢迎转载 更欢迎链接 谢谢你!

芯锐科技——明智之选 好伙伴!

21XR.COM 世纪新锐-----> 电子技术类文档 综合版-----> PIC/51/TI单片机

最近更新

网页制作

计算机应用

PIC单片机

DSP技术

51/TI单片机

电子操作

电视技术

音响技术

无线电技术

仪器仪表

电子CAD

    <--- 返回

用单片机设计A/D、D/A转换器

长虹电子集团公司技术中心(四川绵阳621000) 杨 娈

摘 要 某些单片机内部已经集成了A/D、D/A转换器,使其在工控行业、仪器仪表、家电产品的应用与日俱增。但是,这类单片机还存在价格偏高、引脚利用率较低的问题。介绍一种性价比高,在家电产品应用中具有价格竞争优势的利用PIC16C62×系列单片机的A/D、D/A转换技术。

    关键词 PWM   分辨率  逐次逼近   电阻梯形网络


1 PIC16C62×系列单片机的特点

广告:>>

    PIC16C62×系列为RISC精简指令、哈佛结构总线、18个引脚的单片机。具有低功耗、高性能、全静态、35条指令极易编程的特点。OTP 片种的性价比极高。除了具备一般单片机的特点外,PIC16C62×系列内部集成了两个模拟比较器和一个4bit的可编程基准电压源(VREF)。如果利用该单片机的这些特点,只需几个外围RC元件就具备A/D与D/A转换功能,且分辨率达到8bit~10bit。价格上的优势使其在工控行业、仪器仪表、家电产品的应用前景极为乐观。

    本文以8bit分辨率论证A/D、D/A转换的实现方法,更高分辨率的方案完全相似,只是在编程上作小部分调整。

2 D/A转换器

PIC16C62×系列单片机内部部分功能模块及A/D、D/A的电路如图1所示。

YL_1.gif (3543 字节)

图1 PIC16C62×部分功能模块及转换电路

2.1 利用内部基准源

    PIC16C62×系列单片机内部基准源由一16个抽头的电阻梯形网络构成,相当于一个4bit 分辨率的D/A转换器,该基准源由VRCON特殊功能寄存器控制。VRCON寄存器定义如下:

VREN

VROE

VRR

VR3

VR2

VR1

VR0

    VRENVREF基准电压源使能位,当VREN=1时,内部基准电压源使能。

    VROEVREF输出选择位,VROE=1时,VREF输出至RA2引脚。

    VRRVREF段选择,VREF值可编程设定为高低两个段输出。

    VR3~VR0:4bit VREF电压值。改变该4位的值即改变了VREF的电压值。为了后文说明的需要,将该4位二进制码作如下定义:

    VR= VR3VR2VR1VR0

    VR-1=VR3VR2 VR1VR0-1

    根据PIC16C62×的特性:

    (1)当VRR=1时,低段基准电压输出VREFL= VDD*VRL/24,分辨单元VF1=VDD/24。

    VREFL电压值范围为:VRL*VDD/24,VRL= 0~15,表示相应的低段二进制码值。

    (2)当VRR=0时,高段基准电压输出VREFH=VDD/4+VDD*VRH/32,分辨单元VF2=VDD/32。VRH=0~15,VRH表示相应的高段二进制码值。

    VREFH电压值变化范围为:VDD/4~23*VDD/32。

    上述VDD为PIC16C62×的供电电压,只要在该供电端加一个简单的LC电源去耦电路,就能很好的保证基准电压VREF的抗噪声要求。

    由上述可见,PIC16C62×系列单片机的内部基准源实际是一个可设定为两个段值的4bit D/A转换器,每个段二进制码值均为0~15,两个段的分辨单元不一样。为了设计一个8bit及以上的D/A转换器,需将VREF的范围进行扩展。使用VREFH值,即VREFH =VDD/4~23*VDD/32,扩展为VREFH= (VDD/4-VDD /32) ~23*VDD/32, 向电压低端扩展一个分辨单元值VDD /32,相当于二进制码值VRH=0~15扩展为-1 ~15。这是实现8bit及以上D/A转换的关键。VRH= -1是一个特殊条件,超出了VREF取值范围对应的二进制码值VRH的界限,须由低段基准电压VREFL与外围可编程固定衰减比的电阻网络实现。PIC16C62×的内部有一个场效应OC门(漏极开路门),将其接成图1所示的应用电路。

    当OC门GK导通时,衰减系数K=R1/(R0+R1R0=2kΩ(内部固定电阻)。

    当OC门GK截止时,衰减系数K=1 (RA4引脚为高阻)。

    场效应OC门通过编程对RA4引脚进行I/O操作实现其导通与截止。

    由上所述,高段VRH=-1对应的VREFH基准值可由低段二进制码值VRL对应的VREFL值乘上系数K得到。

    VRH=-1时,VREFH=VDD/4-VDD/32=7VDD /32,建立如下方程式

    7VDD /32 =(VDD/24)* VRL*K      (1)

    VRL=1~15 (取整数)                          (2)

    K<1                                                 (3)

    可得VRL=6~15的多组解,取其中任一组解均可,例如:VRL=7,K=0.75。

    系数K由外接电阻R1的取值决定。编程时,首先确定VRL值,然后根据式(1)计算出系数K,再根据K=R1/(R0+R1)、R0=2kΩ 计算出R1的阻值。R1也可用一只电位器调整的方式代替。

2.2 编程4bit PWM实现8bit的D/A转换

    设8bit 待D/A转换的二进制数存放于PIC16C62×的数据存储器的某一单元,定义为如下格式:

VR3

VR2

VR1

VR0

VP3

VP2

VP1

VP0

    将其分为两个4bit的二进制码:VR=VR3VR2VR1 VR0,VP=VP3VP2VP1V P0。VR控制基准电压源实现4bit D/A转换,VP用于对基准源的输出电压进行4bit PWM(脉宽调制)。PWM的高电平为VR对应的VREF电压值, PWM的低电平为VR-1对应的VREF电压值。如此,以4bit D/A转换基准电压源的两个相邻二进制码对应的两个VREF值,分别作为4bit PWM的高电平和低电平,这就组成一个8bit的D/A转换器。图2、图3为常规PWM与D/A+PWM的区别,常规PWM 的高电平为VDD(如5V),低电平为0V,其原理众所皆知,此处不 YL_2.gif (1419 字节)
再详细叙述。本文所述的D/A+PWM其PWM的工作原理与常规PWM的工作原理一样,只是PWM脉冲的高电平与低电平分别由VR 与VR-1的值决定。编程时,首先将待D/A转换的8bit二进制数分成高4位与低4位,低4位存放于PIC16C62×的某一数据存储器R0中,高4位作4次右移(移到字节低端)存放于PIC16C62×的另一个数据存贮器R1中。利用PIC16C64×的一个定时器中断编写PWM程序,PWM的占空比由R0中的值(即VP值)决定。将定时器中断设置为最高优先级别,以保证PWM的占空比精度。此段程序的实质是:在由二进制码VP决定占空比的PWM程序中对VRCON控制寄存器进行赋值操作。PWM脉冲的高电平由向VRCON控制寄存器低4位装入VR产生,PWM脉冲的低电平由向VRCON控制寄存器低4位装入VR-1产生。程序中需判断:当VRH=0时,VR-1对应的VREF由前所述的VREFL低段值实现。

    VOUT即为8bit 的D/A输出。PWM的滤波电路由R0R2C1组成,其时间常数根据PWM的周期选定,与具体应用中对D/A转换要求的速度和编程有关。由于PIC16C62×的高速RISC精简指令,D/A转换速度可达到400K bit /s以上。VDD的温漂要求尽量小。VOUT可根据需要进行放大或电平变换。

3 A/D转换器

    如图1所示,把前述D/A转换输出的VOUT模拟信号接到PIC16C62×内部的一个比较器的同相端,待转换模拟信号接到比较器的反相端,这就构成一个典型的逐次逼近型A/D转换器。其原理在许多教科书里讲得非常清楚,本文不再详述。

    由于PIC16C62×具有比较器中断功能,充分利用比较器中断可提高编程效率及提高A/D转换速度。定义一个PIC16C62×的数据存储器单元作为A/D转换结果数据寄存器,启动A/D转换之前在此寄存器内预置一个经验数据,采用前述D/A转换的方法将此数据转换成VOUT电平,VOUT电平与待转换模拟信号电平进行比较。比较器的同相端电平高于反相端电平时,比较器输出逻辑“1”,并产生一次中断。比较器的同相端电平低于反相端电平时,比较器输出逻辑“0”,也产生一次中断。比较器输出逻辑状态“1”或“0”可从其特殊功能寄存器的相关位查询获取。在比较器中断程序中,根据查询结果逐次修改“A/D转换结果数据寄存器”中的数据,使VOUT电平逐次逼近并最终收敛于待转换模拟信号电平,收敛时数据寄存器中的值即为A/D转换结果。收敛算法的优劣是提高A/D转换速度的关键,这与具体应用场合及外围电路参数相关。不过,大多数家电产品应用中被转换的模拟信号为低速缓慢变化信号,对A/D转换速度的要求并不高。因此,对收敛算法的要求不高,通常采用从MSB至LSB逐次进行比较的算法。另外,待转换模拟信号须经过电平变换,使其变化范围与VOUT电平的变化范围相一致。

4 小结

    PIC16C62×系列单片机内部有两个独立的模拟比较器,并且其数字I/O口具备直接驱动发光二极管与LED数码管的能力。采用本文所述的A/D、D/A转换器原理的应用电路只占用其内部一个模拟比较器、一个基准源、4个引脚的资源,外围电路也很简单,应用系统容易做到体积小、可靠性高、性价比好。缺点是A/D、D/A的转换速度较慢并占用单片机的大量时间资源,适合于低速变化的信号应用。

参 考 文 献

1 MICROCHIP. PIC16C62× DATA SHEET. 1997. 10 ~ 22

 

 

21XR.COM 版权所有 联系我们