----有关遥控 有关射频 有关无线通讯的 专业文档资料站 315MHz.COM 遥控网 RF315.COM 射频网 

 RF315.COM首页 | 遥控制作(无线 红外 载波 DTMF等) | 相关元器件 | 基础知识 | 标准、法规 | │传感器 单片机 自控 CAD等综合版│

基础知识>Follow me Radio跟我学无线电>晶体二极管及晶体管放大电路

  日期:2006-01-07 21 作者: 来源:microearonline.com
基础无线电物理学及电波理论

晶体二极管及晶体管放大电路

    Follow me Radio跟我学无线电快速通道
高频电路设计与制作 常用业余无线电技术图表
Follow me 数字电路 怎样选用无线电元器件及检测方法
通俗PROTEL电子线路PCB设计图解教程 基础无线电物理学及电波理论
从矿石收音机到单片十波段集成电路CXA1619 实用业余无线电制作操作技法
动手再动手无线电制作1000
  基础无线电物理学及电波理论阅读索引
 
电磁波频率、周期与波长 电压、伏特、电流和电抗(电阻)
无线电波段划分及主要传输途径 欧姆定律和功率(瓦特)
无线电波传输媒质对传输的影响 半导体基础知识及PN
影响通信距离的主要因素及估算方法 晶体二极管及晶体管放大电路
常用通信天线及其架设 在线无线电基础知识小测试
    半导体二极管及其特性
    半导体二极管按其结构和制造工艺的不同,可以分为点接触型和面接触型两种。
    点接触二极管是在P型硅晶晶体或N型锗晶体的表面上,安装上一根用钨或金丝做成的触针,与晶体表面接触而成,然后加以电流处理,使触针接触处形成一层异型的晶体。很据所用金属丝的不同,分别称之为钨键二极管和金键二极管。国产2APl72APll—17型半导体二极管即属此类。但前者触针是钨丝,后者是金丝。
    面接触型二极管多数系用合金法制成。在N型锗晶体的表面上安放上一块铟,然后在高温下使一部分锗熔化于铟内。接着将温度降低,使熔化于姻内的锗又沉淀而出,形成P型晶体。此P型晶体与末熔化的N型晶体组成P—N结。
    点接触型半导体二极管具有较小的接触面积,因而触针与阻挡层间的电容饺小(1微微法);而面接触型二极管的极间电容较大,约为1520微微池。因此,前者适合于在频率较高的场合工作,而后者只适宜于频率低于50千赫以下的地方工作;另外前者允许通过的电流小,在无线电设备中宜作检波用,后者可通过较大之电流,多用于整流。
    常用的半导体二极管其特性指标参数意义如下:
    1.工作频率范围f(MHz):指由于P—N结电容的影响,二极管所能应用的频率范围。
    2.最大反向电压Vmax(V):指二极管两端允许的反向电压,一般比击穿电压小。反向电压超过允许值时,在环境影响下,二极管有被击穿的危险。
    3.击穿电压VB(V):当二极管逐渐加上一定的反向电压时,反向电流突然增加,这时的反向电压叫反向击穿电压。这时二极管失去整流性能。
    4.整流电流I(mA)I指二极管在正常使用时的整流电流平均值。
    晶体三极管及其工作原理
    晶体三极管系由俩个P—N结组合而成。根据组合方式的不同,有PNP型及NPN型两种。它们的工作原理是完全相同的。
    晶体三极管的制造方法有生长法、合金法和扩散法等数种。出于生长法工艺复杂,质量控制困难,目前已被淘汰。合金法工艺简单,价格低廉,目前多采用此法生产。国产3AXl—5型晶体管即采用合金法制成。合金法制成的晶体管的缺点是结的厚度不易精确控制,因而工作频率不高。
    扩散法的优点是P—N结的厚度可以精确控制,能获得很薄的扩散层,因而工作频率可以大大提高。国产3AGll14即属此型,适易在高频下工作。
    晶体三极管共有三个不同的导电区域,例如两个P型区夹着一个N型区(P—N—P),或两个N型区夹着一个P型区NP—N),就做成了晶体三极管的基本部分——管芯。在每两个导电区之间都形成一个P—N结,所以无论是哪一种晶体三极管,都含有两个P—N结。按照它们不同的作用,分别叫做发射结和集电结。两个结把一块完整的晶体分成三个区。如果两边是空穴导电的P型区,而中间是电子导电的N型区,我们就称它为P—N—P型晶体三极管,反之,绻奖呤?font face="Arial">N型区,中间是P型区,就叫N—P—N型晶体三极管。晶体三极管的三个区域,根据作用的不同,分别叫做发射区、基区和集电区,它们是三极管的三个电极,分别叫做发射极、基极和集电极。为方便起见,常以拉丁字母ebc表示。
    晶体三极管的工作原理基本上可以用它的放大作用来解释。因为,放大原理是晶体管一切工作的基础。
    我们知道,在PN结两端不加电压,电子和空穴的扩散受P—N结势垒电压的阻止,无法继续进行。还知道:加正向电压可使P—N结阻挡层势垒电压降低,扩散就能够继续进行;如果加反向电压,将增高势垒电压,扩散就停止。
    现在假定:在晶体三极管的发射结加正向电压(P区接电池正极,N区接负极),集电结加反向电压(P区接电池负极,N区接正极)。这时,发射结势垒降低,扩散能够进行,于是基区的电子跑向左边的发射区,发射区的空八跑向基区。如果用Ib代表从发射结注入基区的空穴电流,用Ic代表从发射结注入发射区的电子电流,那么,从发射结流出的总电流Ie等于两者之和。
    在实际晶体管中,为了适应需要,人们设法使基区少掺些杂质,所以它的电子远比发射区的空穴少,因此电子电流远小于空穴电流,以至于Ib可以忽略不计,这时IeIc
    这样一来,可以明显地看出,发射极的作用就是向基区发射空穴,就好象电子管的阴极是专门发射电子一样。
    大量的空穴到达基区以后,由于基区做得很簿,空穴很容易渡越基区跑到集电结的边缘。集电结上加有几伏甚至几十伙的反向电压,这个电压对空穴来说是能帮助空穴进入集电区的。也就是况,带正电的空穴一赶到集电结的左边,就受到集电结右边P区的负电压作用,被吸引过去,然后与外电路的电池送来的电子复合,形成集电极电流Ic
    但是,并不是所有扩散到基区的空穴都能被集电极吸引,形成集电极电流。因为在空穴路过基区的时候会和基区(N型区)的多数载流子电子互相吸引,和电子复合而消失,加之上述基区也有少量的电子会跑到发射区去和空穴复合,形成Ic,这两种复合都需要由外电路电池供给负电子,所以形成了基极电流Ib。但因为基区很清(厚度只有万分之一米),空穴穿过基区的时间只有几亿分之一秒,所以复合的数量是很小的,绝大部分空穴都达到集电极,故集电极电流Ic几乎等于发射极总电流Ie
这是一个模拟晶体管工作状态的FLASH,你现在就可以填入数字或直接按Push开始。
    上面讲的是只加固定电压而未加输入交流信号的情况。在加入输入信号之后,加到发射结上的电压就等于电池电压Veb和信号电压之和,由于信号电压是不断变化的,发射结上的电压也就随着信号电压在变动,因而引起发射结阻挡层势垒的高低也作相应的变化。势垒高时,发射极电流Ie小,势垒低时Ie大也就是发射极电流Ie会随着输入电压变化而变化。发射极电流Ie大就说明到达基区的空穴多,穿过基区到达集电结的空穴也就多,结果集电极电流Ic也就大,反之,发射极电流Ie小时,集电极电流也会小。同时,我们也会想象到发射极电流Ie大时,空穴在基区的复合数目也会多些,Ie小时复合也相应少些,复合电流也是变化的。不过这种变化,由于复合电流本来就很小,和Ie1c的变化相比是很小的,可以忽略。在这里我们用△Ie代表发射极电流的变化数量,用△Ic代表集电极电流的变化数量。
    若用△R代表发射结的交变电阻,R代表负载电阻,我们很容易算出电压放大倍数K。如果以Vo表示集电极电流△Ic在负载R上产生的输出电压,Vin表示输入电压,那么
K=Vo/Vin=(IcR)/(IeR)R/R
    由于发射结上加的是正向电压,这个电压变化一点点,流过结的电流就会有很大变化,所以发射结电阻△R是很小的,一般只有几十欧。我们知道P—N结的正向电阻很小,而P—N结的反向电阻却很大,所以集电结的电阻很大,可达几百千欧。因此负载电阻R也可以用的很大(阻抗匹配)R一般是几千欧到几十千欧,所以R/△R就很大,因此从负载上取出的输出信号电压Vc远比输入信号电压Vin大,被放大了很多倍。这就是晶体三极管放大信号的道理。
    本站全部有关无线电技术--Follow me Radio跟我学无线电之基础无线电物理学及电波理论文献与稿件的版权属于美国国家科学院、中国科学技术协会、所注明之作者及本站所有。其中包括的多数内容为版权材料,未经书面同意,不得以任何形式复制或分发这些内容,否则将被视为侵权从而导致可能的法律诉讼。
 

315MHz.COM 版权所有 联系我们